Skip to content

This package provides API and functionality to efficiently compute quantiles for anomaly detection in service/system logs.

License

Apache-2.0, MIT licenses found

Licenses found

Apache-2.0
LICENSE
MIT
LICENSE.txt
Notifications You must be signed in to change notification settings

LogFlow-AI/QuantileFlow

QuantileFlow

This package provides API and functionality to efficiently compute quantiles for anomaly detection in service/system logs. Developed under LogFlow-AI initiative.

Latest Version on PyPI Build Status Documentation Status Built with PyPi Template DOI

Key Features

  • Multiple Algorithms: Includes DDSketch, MomentSketch and HDRHistogram implementations
  • Memory Efficient: Uses compact data structures regardless of data stream size
  • Mergeable: Supports distributed processing by merging sketches
  • Accuracy Guarantees: Provides configurable error bounds
  • Fast Operations: O(1) insertions and efficient quantile queries
  • Python API: Simple and intuitive interface for Python applications

Documentation

Visit Read the Docs for the full documentation, including overviews and several examples.

Citation

If you use QuantileFlow in your research or project, please cite our paper:

Plain Text:

Dhyey Mavani, Tairan (Ryan) Ji, and Marius Cotorobai, “QuantileFlow: A Unified and Accelerated Quantile Sketching Framework for Anomaly Detection in Streaming Log Data”, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 12, no. 1, pp. 250–259, Jan. 2026, doi: 10.32628/CSEIT261212.

BibTeX:

@article{mavani2026quantileflow,
  title={QuantileFlow: A Unified and Accelerated Quantile Sketching Framework for Anomaly Detection in Streaming Log Data},
  author={Mavani, Dhyey and Ji, Tairan and Cotorobai, Marius},
  journal={International Journal of Scientific Research in Computer Science, Engineering and Information Technology},
  volume={12},
  number={1},
  pages={250--259},
  year={2026},
  month={jan},
  doi={10.32628/CSEIT261212},
  url={https://ijsrcseit.com/index.php/home/article/view/CSEIT261212}

DOI: https://doi.org/10.32628/CSEIT261212

About

This package provides API and functionality to efficiently compute quantiles for anomaly detection in service/system logs.

Resources

License

Apache-2.0, MIT licenses found

Licenses found

Apache-2.0
LICENSE
MIT
LICENSE.txt

Contributing

Stars

Watchers

Forks

Packages

No packages published