-
Notifications
You must be signed in to change notification settings - Fork 783
Open
Description
Summary
Adds a beginner-friendly introductory tutorial for MRI reconstruction using the fastMRI knee single-coil dataset and MONAI's reconstruction transforms.
Changes
- New notebook:
reconstruction/MRI_reconstruction/tutorials/01_kspace_basics_fastmri_knee.ipynb- Part 1: What is k-space (loading real data, inverse FFT)
- Part 2: Fourier transform connection (low vs. high frequencies)
- Part 3: Undersampling and aliasing artifacts (1x, 2x, 4x, 8x)
- Part 4: Random vs. equispaced masks using
RandomKspaceMaskd/EquispacedKspaceMaskd - Part 5: Full MONAI preprocessing pipeline (
FastMRIReader→CenterSpatialCropd→ReferenceBasedNormalizeIntensityd) - Part 6: Zero-filled reconstruction → deep learning connection
- New README:
reconstruction/MRI_reconstruction/tutorials/README.md - Updated
README.md: Added missing Reconstruction section listing this tutorial plus existingunet_demoandvarnet_demo - Updated
runner.sh: Added notebook todoesnt_contain_max_epochs(no training loop)
Dataset
- Uses fastMRI knee single-coil validation set (non-commercial license)
- Only one
.h5file (~300 MB) required — no need for the full ~1.5 TB brain multi-coil download - Added to
skip_run_papermillvia existing.*MRI_reconstruction.*pattern
Design decisions
- Bridges the gap between newcomers and production tutorials (
unet_demo,varnet_demo) - Uses
CenterSpatialCropdinstead ofReferenceBasedSpatialCropdto handle the k-space (640×368) vs ground truth (320×320) dimension mismatch - No training loop — purely educational, runs without GPU
Test plan
- Notebook runs end-to-end on Google Colab with real fastMRI knee data (
file1000000.h5) - All 5 matplotlib visualizations render correctly
- Pipeline output shapes:
kspace_masked_ifftandreconstruction_escboth(1, 320, 320) - PEP 8 passes via
./runner.sh -t reconstruction/MRI_reconstruction/tutorials/01_kspace_basics_fastmri_knee.ipynb --no-run - Copyright header present with correct formatting
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
No labels